计算曲线积分:∫(L)(2xy^3-y^2cosx)dx+(1-2ysinx+3x^2y^2)dy.其中L是
1个回答

计算曲线积分:

∫(L) (2xy^3 - y^2cosx) dx + (1 - 2ysinx + 3x^2y^2) dy

其中L是在抛物线2x = πy^2上由点(0,0)到(π/2,1)的一段弧.

——————————————————————————————————————————

补线:

L1:x = π/2、逆时针方向、dx = 0、由y = 0变化到y = 1

L2:y = 0、逆时针方向、dy = 0、由x = 0变化到x = π/2

由于L是顺时针方向,现在设L⁻是L的逆时针方向

∮(L⁻+L1+L2) (2xy^3 - y^2cosx) dx + (1 - 2ysinx + 3x^2y^2) dy

= ∫∫D [∂/∂x (1 - 2ysinx + 3x^2y^2) - ∂/∂y (2xy^3 - y^2cosx)] dxdy、用Green公式

= ∫∫D [(- 2ycosx + 6xy^2) - (6xy^2 - 2ycosx)] dxdy

= ∫∫D (- 2ycosx + 6xy^2 - 6xy^2 + 2ycosx) dxdy

= 0

而∫(L1) (2xy^3 - y^2cosx) dx + (1 - 2ysinx + 3x^2y^2) dy

= ∫(0→1) [0 + 1 - 2y + 3(π/2)^2y^2] dy

= ∫(0→1) [1 - 2y + (3/4)π^2 * y^2] dy

= y - y^2 + (3/4)π^2 * (1/3)y^3:(0→1)

= 1 - 1 + (3/4)π^2 * 1/3

= (1/4)π^2

而∫(L2) (2xy^3 - y^2cosx) dx + (1 - 2ysinx + 3x^2y^2) dy

= ∫(L2) 0 dx

= 0

于是∫(L⁻) + ∫(L1) + ∫(L2) = ∮(L⁻+L1+L2)

∫(L⁻) + (1/4)π^2 + 0 = 0

∫(L⁻) = - (1/4)π^2

∫(L) = (1/4)π^2

即原式∫(L) (2xy^3 - y^2cosx) dx + (1 - 2ysinx + 3x^2y^2) dy = (1/4)π^2