过点P(4,1),Q(2,-1) 的直线方程为y=x-3
垂直P(4,1),Q(2,-1)且过其中点的直线与直线4x+y=0上的交点为圆心坐标
垂直P(4,1),Q(2,-1)且过其中点的直线方程为 y=-x+3
交点坐标 (-1 4)
半径等于 圆心到P的距离r²=34
所以园方程为(x+1)²+(y-4)²=34
由于P.Q两点均在圆上,所以PQ为圆的弦,PQ中垂线过圆心,由P(4,1)Q(2,-1)得PQ中点M(3,0),PQ斜率为1,所以中垂线斜率为-1,所以中垂线方程y=-x+3
联立直线4x+y=0,解得x=-1,y=4,所以圆心坐标为(-1,4)
用两点间距离公式得半径r=根号34
所以圆的方程是:(x+1)^2+(y-4)^2=34