解由参数方程x=1+t y=-2+2t
得y=-2+2(x-1)
即y=2x-4
设直线y=2x-4与椭圆4x^2/9+y^2/9=1交点A(x1,y1)B(x2,y2)
由y=2x-4
与4x^2/9+y^2/9=1
联立消y得
4x^2+(2x-4)^2=9
即8x^2-16x+7=0
则其Δ=(-16)^2-4*8*7=32,
则/AB/=√[(x1-x2)^2+(y1-y2)^2]
=√(1+k^2)√(x1-x2)^2
=√(1+k^2)/(x1-x2)/
=√(1+k^2)√Δ//a/
=√(1+2^2)×√32/8
=√5×4√2/8
=√10/2