解题思路:(1)观察图象,即可求得甲公司用户月通话时间不超过400分钟时应付的话费金额;
(2)首先设通话费用y(元)与通话时间t(分)之间的函数关系式为y=kx+b,由直线过点(400,30),(500,70),利用待定系数法即可求得答案;
(3)根据题意求得甲乙公司通话费用y(元)与通话时间t(分)之间的函数关系式,然后比较,利用不等式求解,即可求得答案.
(1)30元;
(2)设y=kt+b
∵直线过点(400,30),(500,70),
∴
30=400k+b
70=500k+b得
k=0.4
b=−130
∴甲公司的用户通话时间超过400分钟后,通话费用y(元)与通话时间t(分)之间的函数关系式为:y=0.4t-130;
(3)甲:y1=
30(0≤t≤400)
0.4t−130(t>400),
乙:y2=50+[0×2+0.10×1+0.90×1/4]t=50+[t/4],
∵y2>50>30,
∴满足题意要求的t>400.
即0.4t-130≥50+[t/4],
得t≥1200,
∴t不少于1200分钟时,入乙比甲合算.
点评:
本题考点: 一次函数的应用.
考点点评: 此题考查了一次函数的应用问题,注意待定系数法的应用,考查了学生的识图能力.此题难度适中,解题的关键是理解题意,准确识图.