答:
asinx+bcosx-√(a²+b²)cos2x=0
√(a²+b²)sin(x+p)=√(a²+b²)cos2x (p由辅助角公式确定)
cosp=a/√(a²+b²),sinp=b/√(a²+b²)
p=arcsin[b/√(a²+b²)]
sin(x+p)=cos2x=sin(2x+π/2)
1)
x+p=2x+π/2-2kπ:x=2kπ-π/2+p
sinx=sin(2kπ-π/2+p)
=sin(-π/2+p)
=-cosp
=-a/√(a²+b²)
2)
π-(x+p)=2x+π/2-2kπ:x=(2kπ+π/2-p)/3
sinx=sin[(2kπ+π/2-p)/3]
=sin { {2kπ+π/2-arcsin[b/√(a²+b²)] } /3 }