已知数列{an}满足前N项和sn=n平方+1数列{bn}满足bn=2/an +1且前n项和为Tn 设T 2n+1 -Tn
2个回答

(1)

∵数列{an}满足前N项和sn=n平方+1

∴Sn=n^2+1

S(n-1)=(n-1)^2+1

An=Sn-S(n-1)

=n^2+1-[(n-1)^2+1]

=2n-1

A1=S1=2

Bn=2/An +1=2/(2n-1)+1=(2n+1)/(2n-1)

B1=2/A1+1=2

Bn是一个首项为2,通项为(2n+1)/(2n-1) 的数列

(2)

Cn=T(2n+1)-Tn

要判断Cn的单调性只要判断Cn-C(n-1)是大于0还是小于0即可

Cn-C(n-1)=T(2n+1)-Tn-[T(2n-1)-T(n-1)]

=[T(2n+1)-T(2n-1)]-[Tn-T(n-1)]

=B(2n+1)+B(2n)-Bn

=[2(2n+1)+1]/[2(2n+1)-1]+[2(2n)+1]/[2(2n)-1]-[(2n+1)/(2n-1)]

=1+2[1/(4n+1)+1/(4n-1)-1/(2n-1)]

∵1/(4n+1)+1/(4n-1)-1/(2n-1)

= (1-8n)/[(4n+1)*(4n-1)*(2n-1)]

又∵1-8n0,4n-1>0,2n-1>0

∴(1-8n)/[(4n+1)*(4n-1)*(2n-1)]