化简(2cos(x/2)^2-sinx-1)/(根号2sin(π/4+X))
收藏:
0
点赞数:
0
评论数:
0
1个回答

[2cos(x/2)^2-sinx-1]/[√2sin(π/4+X)]

=[cosx+1-sinx-1]/[√2sin(π/4+X)]

=[cosx-sinx]/[√2sin(π/4+X)]

=√2[√2/2cosx-√2/2sinx]/[√2sin(π/4+X)]

=√2[cosπ/4cosx-sinπ/4sinx]/[√2sin(π/4+X)]

=√2[cos(π/4+x)]/[√2sin(π/4+X)]

=cos(π/4+x)/sin(π/4+X)

=cot(π/4+x)

点赞数:
0
评论数:
0
关注公众号
一起学习,一起涨知识