用二重积分算体积v是球体x^2+y^2+z^2
1个回答

先计算两球的交线,易得:交线为z=r/2,平面z=r/2将这个公共部分分为两部分,这两部分是对称的,因此我们只求上半部分,然后2倍即可.

将z=r/2代入球面方程得:x²+y²=3r²/4

因此本题转化为计算球面x²+y²+z²=r²被圆柱面x²+y²=3r²/4截出的球冠体积,然后2倍.

球面x²+y²+z²=r²方程化为:z=√(r²-x²-y²)

A1=∫∫√(r²-x²-y²)dxdy 积分区域为:x²+y²≤3r²/4

用极坐标

=∫∫ρ√(r²-ρ²)dρdθ

=∫[0---->2π]dθ∫[0---->√3r/2] ρ√(r²-ρ²)dρ

=2π∫[0---->√3r/2] ρ√(r²-ρ²)dρ

=π∫[0---->√3r/2] √(r²-ρ²)d(ρ²)

=-(2/3)π(r²-ρ²)^(3/2) |[0---->√3r/2]

=(2/3)π[r³-(r²-3r²/4)^(3/2)]

=(2/3)π*(7/8)r³

=(7/12)πr³

A=2A1=(7/6)πr³