在三角形ABC中AB=AC,角ABD等于40度,BD平分角ABC,延长BD至E,使DE=AD,角ECA度数为多
2个回答

∠ABD=∠DBC=40°, ∠ABC=∠ACB=80°,∠BAC=20°,∠BDC=60°

∠ADE=∠ABD+∠BAD=60°,DE=AD,△ADE为等边三角形.

∠ADE=∠AED=∠EAD=60°

设AD=DE=AE=x,

则AB/sin∠AEB = AE/sin∠ABE

AB=x*sin60°/sin40°

BC/sin∠BAC = AB/sin∠ACB

BC=x*sin60°* sin 20°/ (sin40°* sin80°)

CD/sin∠CBD = BC/sin∠BDC

CD=x*sin60°* sin 20°*sin40°/ (sin40°* sin80°*sin60°)

=x*sin20°/sin80°=2xsin10°

DE/sin∠DCE = CD/ sin∠CED ∠DCE + ∠CED =∠ADE=60° 设∠ECA=a

即 x/(sina)=2xsin10°/sin(60°-a)

tana=sin60°/ (cos60°+2sin10°)

a=arctan (sin60°/ (cos60°+2sin10°))= 45.626299575261°