若实数列{an}满足ak-1+ak+1≥2ak(k=2,3,…),则称数列{an}为凸数列.
1个回答

解题思路:(Ⅰ)将

a

n

=(

3

2

)

n

(n∈

N

+

)

代入ak+1+ak-1-2ak判定符号,从而确定数列{an}是否是凸数列;

(Ⅱ) (i)由ak-1+ak+1≥2ak(k=2,3,…)得ak+1-ak≥ak-ak-1,从而am-an≥(m-n)(an+1-an)则

a

m

a

n

m−n

a

n+1

a

n

,同理可得an-ak≤(n-k)(an+1-an)即

a

n

a

k

n−k

a

n+1

a

n

,从而证得结论;

(ii)由

a

m

a

n

m−n

a

n

a

k

n−k

得(m-n)ak+(n-k)am≥(m-k)an①,先证

{

S

n

n

}

是凸数列,由①得可得结论.

(Ⅰ)∵ak+1+ak−1−2ak=(

3

2)k+1+(

3

2)k−1−2(

3

2)k=

1

4(

3

2)k−1>0,

∴数列an=(

3

2)n(n∈N+)是凸数列.

证明(Ⅱ) (i)由ak-1+ak+1≥2ak(k=2,3,…)得

ak+1-ak≥ak-ak-1am-an=(am-am-1)+(am-1-am-2)+…+(an+1-an)≥(m-n)(an+1-an

am−an

m−n≥an+1−an,an-ak=(an-an-1)+(an-1-an-2)+…+(ak+1-ak)≤(n-k)(an-an-1)≤(n-k)(an+1-an

an−ak

n−k≤an+1−an,故

am−an

m−n≥

an−ak

n−k].

(ii)由

am−an

m−n≥

an−ak

n−k得(m-n)ak+(n-k)am≥(m-k)an.①

故先证{

Sn

n}是凸数列.

在(m-n)ak+(n-k)am≥(m-k)an中令m=n+1得ak+(n-k)an+1≥(n+1-k)an,令k=1,2,…,n-1,(n≥2)叠加得Sn−1+

1

2n(n−1)an+1≥

1

2(n+2)(n−1)an,⇒2Sn-1+n(n-1)(Sn+1-Sn)≥(n+2)(n-1)(Sn-Sn-1

⇒n(n+1)Sn−1+n(n−1)Sn+1≥2(n2−1)Sn

S

点评:

本题考点: 数列与不等式的综合;数列的函数特性.

考点点评: 本题主要考查了数列与不等式的综合,以及新定义和数列的函数特性,同时考查了计算能力,属于难题.