(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,
∵△ABC中,AB=AC,
∴∠ABC=∠ACB,且BD=PC,BP=CQ,
∴△BPD≌△CQP(SAS).
(2)设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等;则可知PB=3tcm,PC=8-3tcm,CQ=xtcm,据(1)同理可得当BD=PC,BP=CQ或BD=CQ,BP=PC时两三角形全等;
①当BD=PC且BP=CQ时,8-3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情况;
②BD=CQ,BP=PC时,5=xt且3t=8-3t,解得:x=(四分之十五);
故若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为 (四分之十五)cm/s时,能够使△BPD与△CQP全等.
可参考 http://zhidao.baidu.com/question/338027153.html?an=0&si=1