解题思路:设所求的四位数为
.
abcd
,由题意可得关于a、b、c、d的一个等式,运用估算、讨论、枚举等方法,分别求出a、b、c、d的值.
设这个四位数为
.
abcd,依题意得,
1000a+100b+10c+d+a+b+c+d=1999,
即1001a+101b+11C+2d=1999.
(1)显然a=1,否则,1001a>2000,得101b+11C+2d=998;
(2)因为11c+2d的最大值为99+18=117,故101b≥998-117=881,有b=9,则11c+2d=998-909=89;
(3)由于0≤2d≤18.则89-18=71≤11c≤89,故c=7或c=8;
当c=7时,11c+2d=77+2d=89,有d=6;
当c=8时,11c+2d=88+2d=89,有d=[1/2](舍去).
故这个四位数是1976.
点评:
本题考点: 数的十进制.
考点点评: 解与整数相关的问题,常常要用到“估算”这种重要方法.运用估算是在解决问题的过程中,合理运用缩放、近似等方法简化计算的一种算法,运用估算往往能使我们更迅速地接近正确目标.