三棱锥pabc中pa垂直平面abc,ab垂直bc,pa=ab=bc=2,则内切球的体积为
1个回答

假设内切球体的圆心为O,内切球体的半径为R,

∵pa垂直平面abc,ab垂直bc,

∴BC⊥PB PA⊥AC

又∵pa=ab=bc=2

∴PB=√(PA²+AB²)=√(4+4)=2√2

AC=√(AB²+BC²)=√(4+4)=2√2

根据S P-ABC=1/3×PA×S△ABC=S O-PAB+S O-PAC+S O-PBC+S O-ABC

=1/3×R×(S△PAB+S△PAC+S△PBC+S△ABC)

=1/3×R×(1/2×PA×AB+1/2×PA×AC+1/2×PB×PC+1/2×AB×AC)

=1/3×R×(1/2×2×2+1/2×2×2√2+1/2×2√2×2+1/2×2×2)

=1/3×R×(4+4√2)

=1/3×2×1/2×2×2

解得R=4/(4+4√2)=√2-1

所以内切球体的体积S=4/3×π×R³=4/3×π×(√2-1)³=4(5√2-7)π/3