求一道微分方程,y'=(x+y)^3这一类的题不是很懂,麻烦讲的详细些
1个回答

设u=x+y,则dy/dx=du/dx-1

代入原方程

得du/dx-1=u³ ==>du/dx=u³+1

==>du/(u³+1)=dx

==>1/3[1/(u+1)+(2-u)/(u²-u+1)]du=dx

==>2/3[2/(u+1)-(2u-1)/(u²-u+1)+3/(u²-u+1)]du=dx

==>2/3[2/(u+1)-(2u-1)/(u²-u+1)+4/(1+((2u-1)/√3)²)]du=dx

==>2/3[2ln|u+1|-ln|u²-u+1|+2√3arctan((2u-1)/√3)]=x+C/3 (C是积分常数)

==>2/3[ln|(u+1)²/(u²-u+1)|+2√3arctan((2u-1)/√3)]=x+C/3

==>ln[(x+y+1)^4/(x²+2xy+y²-x-y+1)²]+4√3arctan[(2x+2y-1)/√3]=3x+C

故原方程的通解是

ln[(x+y+1)^4/(x²+2xy+y²-x-y+1)²]+4√3arctan[(2x+2y-1)/√3]=3x+C (C是积分常数)