1,若连续函数在x=a处有定义,则f(x)就趋向于该点的函数值,所以,若当x→a时,函数f(x)及F(x)都趋于零,且f(x)连续,就满足
2,一般情况下我们不用洛必达法则,只有函数中存在或可以转化成0/0的形式时才用
3,用洛必达法则时,f'(x)和F'(x)都要连续且在x=a处有定义,所以可晒→a时 lim f'(可晒)=f'(a),x→a时 lim f'(x)=f'(a),对F'(x)同理.所以分子分母分别成立.最后用极限的除法就可以化成上面你的形式
1,若连续函数在x=a处有定义,则f(x)就趋向于该点的函数值,所以,若当x→a时,函数f(x)及F(x)都趋于零,且f(x)连续,就满足
2,一般情况下我们不用洛必达法则,只有函数中存在或可以转化成0/0的形式时才用
3,用洛必达法则时,f'(x)和F'(x)都要连续且在x=a处有定义,所以可晒→a时 lim f'(可晒)=f'(a),x→a时 lim f'(x)=f'(a),对F'(x)同理.所以分子分母分别成立.最后用极限的除法就可以化成上面你的形式
最新问答: 现在很少有学生能自学英语把这句话翻译出来 什么叫二元一次方程? 一个圆形,分成8份,4份阴影部分,用3种方法表示 一堆煤用去全部的40%,又运来140千克,这时的煤还比原有的少1/3,原来这堆煤有多少千克? 空间中有四点ABCD,其中向量AB=(2m,m,2)向量CD=(m,m+1,-5)且向量AB+向量CD=(5,13/3, 整数指数幂(3x10的负五次方)的二次方除以(6x10的负二次方)的 二次方 请问:there is going to be another one there tomorrow.中another是 当衣服上粘了灰尘后,用手拍打一下,灰尘就会飞离衣服,这是因为 ______具有惯性的缘故. 关于求三角函数增区间问题f(x)=2sinsin(x+pi/4) 求其单调增区间.第二问.求涵数f(x)的最值及取得最值 一个圆柱形沙滩体积是60立方分米,底面积20平方分米,高是多少? 这是一个很著名的故事:阿基米德与国王下棋,国王输了,国王问阿基米德要什么奖赏?阿基米德对国王说:“ many girls have _____ hair in our school 如果a是自然数,则a i >ia.______.(判断对错) 氧化铜粉末加入硫酸中的现象及化学方程式 it takes sb some time to do sth share sth with sb 这些在英语中属于什么 2300*0.12+40.7*y/2300+40.7=0.11求y? 如图是某蛋白质分子的结构示意图,图中A链由21个氨基酸组成,B链由19个氨基酸组成,图中“-S-S-”是由两个“-SH” 勤劳的蚂蚁 作文 平面直角坐标系中,一个点关于任意一条直线的对称点的坐标怎么求?(有图) 小明家5月份用电250千瓦时,其中用“峰电”150千瓦时,用谷电100千瓦时.请计算他们家使用峰电电价