等差数列{an}的前n项和为Sn,若a3+a7+a11=6,则S13=______.
1个回答

解题思路:等差数列{an}中,由a3+a7+a11=6,解得a7=2,再由等差数列的通项公式和前n项和公式能求出S13

等差数列{an}中,

∵a3+a7+a11=6,

∴3a7=6,解得a7=2,

∴S13=[13/2](a1+a13)=13a7=13×2=26.

故答案为:26.

点评:

本题考点: 等差数列的性质.

考点点评: 此题考查学生掌握等差数列的性质,灵活运用等差数列的前n项和的公式化简求值,是一道基础题.