求微分方程y''+(2x/x^2+1)y'-2x=0
1个回答

y''+2xy'/(x^2+1)-2x=0

(x^2+1)y''+2xy'-2x(x^2+1)=0

x=tanu y'=dy/dx=cosu^2 dy/du u=arctanx du/dx=1/(1+x^2)

y''=dy'/dx=d[cosu^2 dy/du]/du*du/dx

=[-2sin2udy/du+cosu^2 d^2y/du^2 ] *(1/(1+x^2))

(1+x^2)y''=-2sin2udy/du+cosu^2d^2y/du^2

2xy'=sin2udy/du

2x(x^2+1)=2tanu*secu^2=2sinu/cosu^3

cosu^2d^2y/du^2-2sinu/cosu^3=0

d^2y/du^2=2sinu/cosu^5

dy/du=∫2sinudu/cosu^5

=(1/2)(1/cosu^4)+C1

y=∫[(1/2)(1/cosu^4)+C1]du

=C1u+(1/4)secu^2tanu+(1/4)tanu

=C1arctanx+(1/4)x*(1+x^2)+(1/4)x

∫secx^4dx=∫secx^2dtanx=secx^2 tanx-∫tanx^2secx^2dx

=secx^2tanx-∫secx^4dx+∫secx^2dx

2∫secx^4dx=secx^2tanx+tanx

∫secx^4dx=(1/2)secx^2tanx+(1/2)tanx