如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DE
1个回答

解题思路:先利用AAS判定△ACD≌△AED得出AC=AE,CD=DE;再对构成△DEB的几条边进行变换,可得到其周长等于AB的长.

∵AD平分∠CAB交BC于点D

∴∠CAD=∠EAD

∵DE⊥AB

∴∠AED=∠C=90

∵AD=AD

∴△ACD≌△AED.(AAS)

∴AC=AE,CD=DE

∵∠C=90°,AC=BC

∴∠B=45°

∴DE=BE

∵AC=BC,AB=6cm,

∴2BC2=AB2,即BC=

AB2

2=

62

2=3

2,

∴BE=AB-AE=AB-AC=6-3

2,

∴BC+BE=3

2+6-3

2=6cm,

∵△DEB的周长=DE+DB+BE=BC+BE=6(cm).

另法:证明三角形全等后,

∴AC=AE,CD=DE.

∵AC=BC,

∴BC=AE.

∴△DEB的周长=DB+DE+EB=DB+CD+EB=CB+BE=AE+BE=6cm.

故选B.

点评:

本题考点: 角平分线的性质;全等三角形的判定与性质.

考点点评: 本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、AAS、SAS、HL.

注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.