sec ^5x微积分
1个回答

(secx)^5

【求导】

[(secx)^5]'

= 5(secx)^4 *(secxtgx)

= 5(secx)^5 tgx

【积分】

∫(secx)^5 dx

=∫(secx)^3 d(tgx)

=(secx)^3 (tgx) -∫3 (secx)^2 (secx tgx) (tgx) dx

=(secx)^3 (tgx) -∫3 (secx)^3 (tgx)^2 dx

=(secx)^3 (tgx) -∫3 (secx)^3 [(secx)^2-1] dx

=(secx)^3 (tgx) - 3∫ (secx)^5 - (secx)^3 dx

所以4∫(secx)^5 dx = (secx)^3 (tgx) +3∫(secx)^3 dx

同理 ∫(secx)^3 dx

= ∫(secx) d(tgx)

= secxtgx -∫(secx tgx) (tgx) dx

= secxtgx -∫(secx) (tgx)^2 dx

= secxtgx -∫(secx) [(secx)^2-1] dx

= secxtgx -∫(secx)^3 - (secx) dx

2∫(secx)^3 dx = secxtgx +∫secx dx

所以

∫(secx)^5 dx

= (secx)^3 (tgx) /4 +(3/4)∫(secx)^3 dx

= (secx)^3 (tgx) /4 +(3/4)(1/2)(secxtgx +∫secx dx)

= (secx)^3 (tgx) /4 +(3/8)secxtgx + (3/8)∫secx dx

= (secx)^3 (tgx) /4 +(3/8)secxtgx + (3/8) ln |secx + tgx|+ C