文科生向理科生发出寒假作业SOS
1个回答

证明:

因为 在三角形ABC中,

所以 A+B+C=180度,得sinA=sin(B+C)

则A/2=90度-(B+C)/2

得COSA/2=sin((B+C)/2)

左边=sin(B+C)+sinB+sinC

而 4cos(A/2)cos(B/2)cos(C/2)

=4sin((B+C)/2)cos(B/2)cos(C/2)

=4cos(B/2)cos(C/2)*(sinB/2*cosC/2+cosB/2*sinC/2)

=4sin(B/2)cos(B/2)(cos(C/2))^2+4sin(C/2)cos(C/2)(cos(B/2))^2

=sinB(cosC+1)+sinC(cosB+1)

=sin(B+C)+sinB+sinC

所以 左边=右边