∵bn=(2n-5)/2^n
Tn=b1+b2+……+bn
=(2-5)/2+(2*2-5)/2^2+…+(2n-5)/2^n
……①
2Tn=(2-5)+(2*2-5)/2+(2*3-5)/2^2+……(2n-5)/2^(n-1) ……②
由②-①得
Tn=-3+2/2+2/2^2+……+2/2^(n-1)-(2n-5)/2^n
=-3-(2n-5)/2^n+1+1/2+1/2^2+……+1/2^(n-2))
=-3-(2n-5)/2^n+2-1/2^(n-2)
=-1+n/2^(n-1)+1/2^n
我要去上课了,等我回来做啊
(2)Sn=1*2+2*2^2+3*2^3+...+9*2^9 ……①
那么2Sn= 1*2^2+2*2^3+…+8*2^9+9*2^10 ……②
②-①得:Sn=-2-2^2-2^3-……-2^9+9*2^10
=9*2^10-(2+2^2+2^3+……+2^9)
=9*2^10-2(1-2^9)/(1-2)
=9*2^10+2(1-2^9)
=8*2^10+2