已知数列an的前n项和sn=n^2+pn,数列bn的前n项和Tn=2bn-1,求数列{an*bn}的前n项和Mn
2个回答

a1=S1=1+p

n≥2时,

an=Sn-Sn-1

=n²+pn-(n-1)²-p(n-1)

=2n-1+p

b1=T1=2b1-1

b1=1

n≥2时,

bn=Tn-Tn-1

=2bn-1-2bn-1 + 1

=2bn-2bn-1

推出bn=2bn-1

所以bn=b1×2^(n-1)=2^(n-1)

设cn=an×bn=(2n-1+p)×2^(n-1),Un为{cn}前n项和.

则2Un-Un=Un

= (1+p)×2+(3+p)×2^2+(5+p)×2^3+(7+p)×2^4+.+(2n-5+p)×2^(n-2)+(2n-3+p)×2^(n-1)+(2n-1+p)×2^n

-[(1+p)+(3+p)×2+(5+p)×2^2+(7+p)×2^3+(9+p)×2^4+.+(2n-3+p)×2^(n-2)+(2n-1+p)×2^(n-1)]

=-(1+p)-2×2-2×2^2-2×2^3-2×2^4-.-2×2^(n-2)-2×2^(n-1)+(2n-1+p)×2^n

=-(1+p)-[2^2+2^3+2^4+.+2^(n-1)]+(2n-1+p)×2^n

=-1-p-[4-2^(n+1)]/(1-2)+(2n-1+p)×2^n

=4-2^(n+1)-1-p+(2n-1+p)×2^n

=-2×2^n+(2n-1+p)×2^n+3-p

=(2n-3+p)×2^n+3-p