求斐波那契数列的通项公式完整步骤
2个回答

斐波那契数列通项公式推导方法

Fn+1=Fn+Fn-1

两边加kFn

Fn+1+kFn=(k+1)Fn+Fn-1

当k!=1时

Fn+1+kFn=(k+1)(Fn+1/(k+1)Fn-1)

Yn=Fn+1+kFn

当k=1/k+1,且F1=F2=1时

因为

Fn+1+kFn=1/k(Fn+kFn-1)

=>

Yn=1/kYn-1

所以

Yn为q=1/k=1(1/k+1)=k+1的等比数列

那么当F1=F2=1时

Y1=F2+kF1=1+k*1=k+1=q

根据等比数列的通项公式

Yn=Y1q^(n-1)=q^n=(k+1)^n

因为k=1/k+1=>k^2+k-1=0

解为 k1=(-1+sqrt(5))/2

k2=(-1-sqrt(5))/2

将k1,k2代入

Yn=(k+1)^n

,和Yn=Fn+1+kFn

得到

Fn+1+(-1+sqrt(5))/2Fn=((1+sqrt(5))/2)^2

Fn+1+(-1+sqrt(5))/2Fn=((1-sqrt(5))/2)^2

两式相减得

sqrt(5)Fn=((1+sqrt(5))/2)^2-((1-sqrt(5))/2)^2

Fn=(((1+sqrt(5))/2)^2-((1-sqrt(5))/2)^2)/sqrt(5)