RT~三题1.在△ABC中,(1)若sin(B+C/2)=4/5,求cos(A-B)的值;(2),若sinAsinB=c
1个回答

A+C/2+B+C/2=π,A+C/2=π-B-C/2

sin(A+C/2)=sin(π-B-C/2)=sin(B+C/2)=4/5

cos(A+C/2)=cos(π-B-C/2)=-cos(B+C/2)

[cos(B+C/2)]^2=1-(4/5)^2=(3/5)^2

cos(A-B)=cos[(A+C/2)-(B+C/2)]

=cos(A+C/2)cos(B+C/2)+sin(A+C/2)sin(B+C/2)

=-cos(B+C/2)cos(B+C/2)+sin(A+C/2)sin(B+C/2)

=-(3/5)^2+(4/5)(4/5)

=7/25

sinAsinB=cos(平方)C/2

sinAsinB=(cosC+1)/2

2sinAsinB=cosC+1

2sinAsinB=-cos(A+B)+1

2sinAsinB=-cosAcosB+sinAsinB+1

cosAcosB+sinAsinB=1

cos(A-B)=1

因为A,B为三角形的内角,所以A-B=0

A=B,△ABC为等腰三角形

2.8cos(π/4+α)cos(π/4-α)=1

8[cos(π/4)cosα-sin(π/4)sinα][cos(π/4)cosα+sin(π/4)sinα]=1

8[(根号2)/2](cosα-sinα)[(根号2)/2](cosα+sinα)=1

4[(cosα)^2-(sinα)^2]=1

(cosα)^2-(sinα)^2=1/4

(cosα)^2+(sinα)^2=1

(cosα)^2=5/8,(sinα)^2=3/8

sin(四次方)α+cos(四次方)α

=[(cosα)^2+(sinα)^2]^2-2[(cosα)^2][(sinα)^2]

=1-2*5/8*3/8

=17/32

F(θ)=cos(平方)(θ+α)+cos(平方)(θ+β)

=[cos(2θ+2α)+1]/2+[cos(2θ+2β)+1]/2

=[cos(2θ+2α)+cos(2θ+2β)]/2+1

要使F(θ)的值不随θ的变化而变化

即cos(2θ+2α)+cos(2θ+2β)不随θ的变化而变化

cos(2θ+2α)+cos(2θ+2β)

=cos2θcos2α-sin2θsin2α+cos2θcos2β-sin2θsin2β

=cos2θ(cos2α+cos2β)-sin2θ(sin2α+sin2β)不随θ的变化而变化

所以cos2α+cos2β=0,且sin2α+sin2β=0

cos2α+cos2β=0

2(cosα)^2-1+1-2(sinβ)^2=0

(cosα)^2-(sinβ)^2=0

(cosα)^2=(sinβ)^2

cosα=0时,

0≤α<β≤π,α=π/2

sinβ=0,β≤π

β-α=π/2

cosα 不等于 0时,sinβ亦不等于 0

sin2α+sin2β=0

2sinαcosα+2sinβcosβ=0

sinαcosα+sinβcosβ=0,两边乘cosα

得 cosαsinαcosα+cosαsinβcosβ=0

sinα(sinβ)^2+cosαsinβcosβ=0,两边除sinβ

得 sinβsinα+cosαcosβ=0

cos(α-β)=0

0≤α<β≤π,所以-π≤α-β