∫0^1/2[arcsinx / (根号下1+x^2)]*dx 2.∫-1^1[xe^x2/2]*dx 3.∫0^a/2
1个回答

1

∫(0^1/2)[arcsinx /√(1+x^2)]*dx

这个没想好

若∫(0^1/2)[arcsinx /√(1-x^2)]*dx可以做

∫(0^1/2)[arcsinx /√(1-x^2)]*dx

=ʃ(0~1/2)arcsinxd(arcsinx)

=1/2(arcsinx)²|(0~1/2

=π²/72

2.∫-1^1[1/2xe^x2]*dx

=∫-1^1[e^(x^2)dx^2

=e^(x^2))|(-1~1)

=0

3.∫0^a/2[xdx / √(a^2-x^2)] ( a>0)

=1/2∫0^a/2[dx² / √(a^2-x^2)]

设√(a²-x²)=t,

那么a²-x²=t²

∴x²=a²-t²

∴dx²=-2tdt

∴ʃdx²/√(a²-x²)=ʃ-2dt=-2t=-2√(a²-x²)

∫0^a/2[xdx / √(a^2-x^2)] ( a>0)

=1/2∫0^a/2[dx² / √(a^2-x^2)]

=-√(a²-x²)|(0~a/2)

=-√3/2a+a

=(2-√3)a/2