a*cosC,b*cosB,c*cosA成等差数列
则:a*cosC + c*cosA = 2b*cosB
两边同除以b:
a/b*cosC + c/b*cosA = 2cosB
根据正弦定理:a/b=sinA/sinB,c/b=sinC/sinB
∴sinA/sinB*cosC + sinC/sinB*cosA = 2cosB
sinA*cosC + sinC*cosA = 2sinB*cosB
sin(A+C) = sin(2B)
A+C=180°-B
sin(180°-B) = sin(2B)
∵B≠0°(即B≠2B)
∴180°-B = 2B
B = 60°