1.在锐角三角形中,证tanA+tanB+tanC=tanAtanBtanC
1个回答

tanA+tanB+tanC

=tan(A+B)(1-tanAtanB)+tanC

=tan(π-c)(1-tanAtanB)+tanC

=-tanC(1-tanAtanB)+tanC

=-tanC+tanAtanBtanC+tanC

=tanAtanBtanC

2.题目有误

(sin9°+cos15°sin6°)/(cos9°-sin15°sin6°)

=(sin(15-6)+cos15*sin6)/(cos(15-6)-sin15*sin6)

=(sin15*cos6-cos15*sin6+cos15*sin6)/(cos15*cos6+sin15*sin6- sin15*sin6)

=sin15*cos6/(cos15*cos6)

=tan15 [tan(A/2)=(1-cosA)/sinA]

=(1-cos30)/sin30

=(1-√3/2)/(1/2)

=2*(1-√3/2)

=2-√3