求曲线r=(√2 +1)sinθ和r=1+cosθ的交点θ和所围成的面积
1个回答

Let (√2 + 1) sin θ = 1 + cos θ

(3 + 2√2) sin² θ = 1 + 2 cos θ + cos² θ

(3 + 2√2) (1 - cos² θ) = 1 + 2 cos θ + cos² θ

(2 + √2) cos² θ + cos θ - (√2 +1) = 0

cos θ = √2 / 2, θ = ¼ π , or

cos θ = 1, θ = π

So the area overlaped (重复区域的面积)

= ∫ (θ:0→¼ π) ∫[θ:0→(√2 + 1)sin θ rdr ]dθ

+ ∫ (θ:¼ π→π) ∫[θ:0→(1 + cos θ) rdr ]dθ

= ¼(3 + 2√2)(¼π - ½) + 9π/16 - 1/√2 - 1/8

= ¾ π - ½ - ¾ √2 + √2 π/8

≈ 1.35089

曲线 r = (√2 + 1) sin θ 所围成的面积

= ¼(3 + 2√2)π

曲线 r = 1 + cos θ 所围成的面积

= 2 ∫ (θ:0→π) ∫[θ:0→1+cos θ] rdr dθ

= ³/₂π

总面积:

Total Area = ¼(3 + 2√2)π + ³/₂π - [¾ π - ½ - ¾ √2 + √2 π/8]

= ³/₂π + ½ + (3√2)π/8 + ¾ √2

≈ 7.9391