解题思路:(I)连接AQ,由已知中PA⊥平面ABCD,四边形ABCD为矩形,我们易得PQ⊥QD⇔AQ⊥QD,由此我们易得以AD为半径的圆与BC应该有交点,再由AB=1,BC=a,即可得到满足条件的实数a的取值范围;
(II)取AD的中点M,过M作MN⊥PD,垂足为N,连接QM,QN,根据三垂线定理,我们易判断出∠QNM为二面角Q-PD-A的平面角,解三角形QMN,即可得到二面角Q-PD-A的余弦值大小.
(I)连接AQ,∵PA⊥平面ABCD,
∴PA⊥QD,若PQ⊥QD成立,
即AQ⊥QD成立
∴点Q应为BC与以AB为直径的圆的公共点
∴[a/2≥1
故满足条件的实数a的取值范围为a≥2;
(II)由已知可得,当a=2时,BC上有且仅有一点满足题意,
此时Q点为BC的中点,
取AD的中点M,过M作MN⊥PD,垂足为N,连接QM,QN
由于QN⊥平面PAD,
∴∠QNM为二面角Q-PD-A的平面角
∵MD=1,PD=
5],且△DNM∽△DAP
∴MN=
1
5,
从而在直角△QNM中,QN=
6
5
∴cos∠QNM=[MN/QN]=
6
6
点评:
本题考点: 直线与平面垂直的性质;用空间向量求平面间的夹角.
考点点评: 本题考查的知识点是直线与平面垂直的性质,二面角大小的求法,(I)的关键是将AQ⊥QD转化为BC与以AB为直径的圆的公共点;(II)的关键是求出二面角Q-PD-A的平面角.