x + ay = ab(abx+1),
ax + by = ab(aby + 1).
两式相减有(b-a)x - (b-a)y = ab(abx - aby)
即(b-a)(x-y) = (x-y)(ab)^2,所以(b-a - (ab)^2)(x-y) = 0.
由1/a-1/b≠ab,两边同乘以ab得:b-a≠(ab)^2,从而b-a - (ab)^2≠0.所以x-y = 0.
代入bx + ay = ab(abx+1),
中,有(a+b - (ab)^2)x = ab.由1/a+1/b≠ab,两边同乘以ab得:b+a≠(ab)^2,从而b+a - (ab)^2≠0,所以x=y=ab/[(a+b - (ab)^2)]