由等比数列(公比为q)前n项和公式:Sn = a1 *(1- q^n)/(1-q)得:
前m项和Sm = a1 *(1- q^m)/(1-q) = 8…………………………………………(1)
前3m项和S3m = a1 *(1- q^3m)/(1-q) = 38……………………………………(2)
(2)式除以(1)式的:S3m / Sm = (1- q^3m)/(1- q^m) = 38/8 = 19/4……(3)
而由立方差公式:1- q^3m = (1-q^m)(1 + q^m + q^2m) ………………………(4)
(4)式带入(3)式得:(1 + q^m + q^2m) = 19/4
整理得:4*q^2m + 4 * q^m - 15 = 0
解得:q^m = 3/2 或者 q^m = -5/2
所以前2m项和S2m = a1 *(1- q^2m)/(1-q)
= a1 * (1+q^m)* (1-q^m) /(1-q)
= Sm * (1+q^m)
= 8 *(1+ q^m)
代入q^m = 3/2 或者 q^m = -5/2得:
S2m = 20 或者S2m = -12