解题思路:(1)根据等边三角形性质得出AO=OB,CO=DO,∠AOB=∠COD=60°,求出∠AOC=∠BOD,证出△AOC≌△BOD即可;
(1)根据全等得出∠1=∠2,根据三角形内角和定理求出即可;
(3)求出∠AOC=∠BOD,证出△AOC≌△BOD,推出AC=BD,∠OCA=∠ODB,根据三角形内角和定理求出即可
(1)证明:∵△AOB和△COD都是等边三角形,
∴AO=OB,CO=DO,∠AOB=∠COD=60°,
∴∠AOC=∠BOD=60°+∠BOC,
在△AOC和△BOD中,
AO=OB
∠AOC=∠BOD
OC=OD,
∴△AOC≌△BOD(SAS),
∴AC=BD;
(2)∵△ABO是等边三角形,
∴∠OAB=∠OBA=60°,
∴∠1+∠3=60°,
∵△AOC≌△BOD,
∴∠1=∠2,
∴∠APB=180°-(∠3+∠ABO+∠2)
=180°-(∠3+∠1+∠ABO)
=180°-(60°+60°)
=60°;
(3)AC=BD,∠APB=α,
理由是:∵∠AOB=∠COD=α,
∴∠AOC=∠BOD=∠BOC+α,
在△AOC和△BOD中
AO=OB
∠AOC=∠BOD
OC=OD
∴△AOC≌△BOD(SAS),
∴AC=BD,∠OCA=∠ODB,
∴∠APB=180°-(∠PDC+∠PCO+∠OCD)
=180°-(∠PDC+∠BDO+∠OCD)
=180°-(∠ODC+∠OCD)
=∠DOC
=α,
故答案为:AC=BD,∠APB=α.
点评:
本题考点: 全等三角形的判定与性质;等边三角形的性质.
考点点评: 本题考查了等边三角形的性质,全等三角形的性质和判定的应用,主要考查学生的推理能力,题目比较典型,证明过程类似.