∵0<β<α<π/4,∴0<α+β<π/2、0<α-β<π/4.
∴cos(α+β)=√{1-[sin(α+β)]^2}=√[1-(3/5)^2]=4/5.
sin(α-β)=√{1-[cos(α-β)]^2}=√[1-(12/13)^2]=5/13.
于是:
sin2α
=sin[(α+β)+(α-β)]=sin(α+β)cos(α-β)-cos(α+β)sin(α-β)
=(3/5)×(12/13)-(4/5)×(5/13)=(36-20)/65=16/65.
cos2β
=cos[(α+β)-(α-β)]=cos(α+β)cos(α-β)+sin(α+β)sin(α-β)
=(4/5)×(12/13)+(3/5)×(5/13)=(48+15)/65=63/65.