两边求导:dy/dx = [sec(x+y)]^2·[d(x+y)/dx] = [sec(x+y)]^2·[1 + dy/dx]
∴(dy/dx)·[-sin(x+y)]^2 = 1,∴f'(x) = dy/dx = -[sin(x+y)]^(-2)
∴f''(x) = 2[sin(x+y)]^(-3)·cos(x+y)·[1 + dy/dx] = 2cos(x+y)·[1 - [sin(x+y)]^(-2)]/[sin(x+y)]^3
= -2[cos(x+y)]^3 / [sin(x+y)]^5