数列{An}{Bn}满足下列条件:A1=0,A2=1,An+2=An+An+1/2,Bn=An+1-An
2个回答

1.

a(n+2)=[an+a(n+1)]/2

2a(n+2)=an+a(n+1)

2a(n+2)-2a(n+1)=an-a(n+1)

2[a(n+2)-a(n+1)]=-[a(n+1)-an]

[a(n+2)-a(n+1)]/[a(n+1)-an]=-1/2,为定值.

a2-a1=1-0=1,数列{a(n+1)-an}是以1为首项,-1/2为公比的等比数列.

bn=a(n+1)-an,数列{bn}是以1为首项,-1/2为公比的等比数列.

2.

bn=1×(-1/2)^(n-1)=(-1/2)^(n-1)

数列{bn}的通项公式为bn=(-1/2)^(n-1)

第二题不会这么简单吧,估计是抄错题了,应该是求{an}的通项公式吧,解题过程附在下面:

a(n+1)-an=1×(-1/2)^(n-1)=(-1/2)^(n-1)

an-a(n-1)=(-1/2)^(n-2)

a(n-1)-a(n-2)=(-1/2)^(n-3)

…………

a2-a1=(-1/2)^0

累加

an-a1=(-1/2)^0+(-1/2)+...+(-1/2)^(n-2)

=1×[1-(-1/2)^(n-1)]/[1-(-1/2)]

=(2/3)- (2/3)×(-1/2)^(n-1)

n=1时,a1=2/3-2/3=0;n=2时,a2=2/3 -(2/3)×(-1/2)=1,均同样满足通项公式

数列{an}的通项公式为an=2/3 -(2/3)×(-1/2)^(n-1)