这是初中题目吧,一楼用导数方法超范围了.
设 (-2,+∞) 区间上的任意 -2 < x1 < x2
f(x) = [a(x+2) + 1 -2a]/(x+2)
= a + (1 -2a)/(x+2)
f(x2) - f(x1) =
[a + (1 -2a)/(x2 + 2) ] - [a + (1 - 2a)/(x1 + 2)]
= (1 - 2a)[1/(x2 + 2) - 1/(x1 + 2)
= (1 - 2a)(x1 - x2)/[(x2 + 2)(x1 + 2)]
x2 > x1 > -2,所以
x2 +2 > 0
x1 + 2 > 0
x1 - x2 < 0
a > 1/2
1 - 2a < 0
因此
f(x2) - f(x1) > 0
f(x2) > f(x1)
因此 f(x) 在区间(-2,+∞)上为单调递增