(2012•凯里市模拟)如图所示,用一轻质弹簧相连的两个质量均为m的物块A和B,一起沿倾角为θ=37°斜面匀速下滑.现对
1个回答

解题思路:(1)A、B一起沿斜面向上匀加速运动,因此AB可看成一整体,从而对其受力分析,根据共点力平衡的条件结合力的平行四边形定则,可求出物体B与斜面间的动摩擦因数;

(2)先将AB看成整体,运用牛顿第二定律结合滑动摩擦力公式,从而求出整体的加速度;再对物体B受力分析,列出牛顿第二定律,从而求出弹簧的弹力大小.

(1)设物块B与斜面之间的动摩擦因素为μ,对整体,根据平衡条件

2mgsinθ-(fA+fB)=0①

其中:fA=2μmgcosθ②

fB=μmgcosθ ③

联解方程:μ=0.5④

(2)设A、B向上运动过程中的加速度为a,对整体,由牛顿第二定律:

6mgcosθ−2mgsinθ−(

f′A+

f′B)=2ma⑤

其中

f′A=2μ(6mgsinθ+mgcosθ)⑥

f′B=μmgcosθ⑦

设弹簧对B物块的弹力为F′对B,由牛顿第二定律

F′-mgsinθ-fB=ma⑧

联解方程得:F′=12mg

答:(1)物块B与斜面间的动摩擦因素0.5;

(2)物块A、B向上运动过程中弹簧的弹力的大小为12mg.

点评:

本题考点: 共点力平衡的条件及其应用;力的合成与分解的运用;牛顿第二定律.

考点点评: 考查学会对物体进行受力分析,及研究对象的选择;同时会运用牛顿第二定律与力的平行四边形定则解题.

相关问题