在1与100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记作Tn,令an=lg(Tn)(n
2个回答

(1)

设构成等比数列{an},公比为q

1为数列的第1项,100为数列的第n+2项.

100/1=q^(n+1)

q^(n+1)=100

Tn=a1a2...a(n+2)

=a1×(a1q)×...×[a1q^(n+1)]

=[a1^(n+2)]×q^[1+2+...+(n+1)]

=[1^(n+2)]×q^[(n+1)(n+2)/2]

=[q^[(n+1)/2]]^(n+2)

=[100^(1//2)]^(n+2)

=10^(n+2)

an=lg(Tn)=lg[10^(n+2)]=n+2

数列{an}的通项公式为an=n+2.

(2)

bn=tan(an) × tan[a(n+1)]

[tan(a(n+1) -t(an)]/[1+tan(an)×tan(a(n+1)]=tan[a(n+1)-an]=tan(n+1+2-n-2)=tan1

tan(an)×tan[a(n+1)]=[tan(a(n+1)-t(an)]/tan1 -1

Sn=b1+b2+...+bn

=[tan(a2)-tan(a1)+tan(a3)-tan(a2)+...+tan[a(n+1)-t(an)]]/tan1 -n

=[tan(a(n+1)) -tan(a1)]/tan1 -n

=[tan(n+3) -tan3]/tan1 -n