高分求三个一元六次方程的六个根(1)x^6-10x^5+10x^4+80x^3-11x^2-70x=0(2)x^6-6x
1个回答

解:(1)x^6-10x^5+10x^4+80x^3-11x^2-70x=(x-7)(x-5)(x-1)x(x+1)(x+2)=0

∴x1=7,x2=5,x3=1,x4=0,x5=-1,x6=-2

(2)x^6-6x^5-257x^4+750x^3+18544x^2+3936x-177408=(x-14)(x-12)(x-3)(x+4)(x+8)(x+11)=0

∴x1=14,x2=12,x3=3,x4=-4,x5=-8,x6=-11

(3)x^6-x^5-22x^4+35x^3+13x^2-22x-8=(x^3-5x^2+3x+2)(x^3+4x^2-5x-4)=0

解方程x^3-5x^2+3x+2=0得x1=4.164247938460211,x2=-0.3913823806309005,x3=1.22713444217069

解方程x^3+4x^2-5x-4=0得x4=1.4336646297832878,x5=-4.8595233886152185,x6=-0.574141241168071

∴x1=4.164247938460211

x2=-0.3913823806309005

x3=1.22713444217069

x4=1.4336646297832878

x5=-4.8595233886152185

x6=-0.574141241168071