可以吧,;令z = arctanx,tanz = x,dx = (secz)^2 dz
∫ arctanx dx = ∫ z * (secz)^2 dz = ∫ z d(tanz)
= ztanz - ∫ tanz dz
= ztanz + ln|cosx| + C
= arctanx * x + ln|[1/√(1 + x^2)] + C
= xarctanx - (1/2)ln(1 + x^2) + C
直接做也可以.
∫ arctanx dx
= xarctanx - ∫ x d(arctanx)
= xarctanx - ∫ x/(1 + x^2) dx
= xarctanx - (1/2)∫ 1/(1 + x^2) d(1 + x^2)
= xarctanx - (1/2)ln(1 + x^2) + C