如图所示,在双缝干涉实验中,S1和S2为双缝,P是光屏上的一点,已知P点与S1、S2距离之差为2.1×10-6
1个回答

解题思路:已知P点与S1和S2的距离之差,由出现亮暗的条件可判断是亮条纹或暗条纹.根据n=[c/v],v=λf,频率f相等,求出A光在空气中的波长.

对于B光,根据临界角公式sinC=[1/n]求出折射率,再用同样的方法求出B光在空气中的波长.再判断是亮条纹还是暗条纹.

(1)设A光在空气中波长为λ1,在介质中波长为λ2

由n=[c/v=

λ1f

λ2f=

λ1

λ2]得,

λ1=nλ2=1.5×4×10-7m=6×10-7m.

根据光程差:δ=2.1×10-6m=3

1

2λ1,

知A光在P点是暗条纹.

(2)设B光在空气中波长为λ1,在介质中波长为λ2,由n=

λ1

λ2得,λ1=nλ2

又临界角C=37°所以n=[1/sinC],

所以λ1=

λ2

sinC=

3.15×10−7

0.6=5.25×10-7m.

根据光程差:δ=2.1×10-6m=4λ1知,B光在P点是亮条纹.

(3)由于两光的波长不同,则频率不同,在光屏上不会出现干涉条纹,但光屏上仍有光亮.

答:(1)A光在P点是暗条纹.(2)B光在P点是亮条纹.(3)在光屏上不会出现干涉条纹,但光屏上仍有光亮

点评:

本题考点: 用双缝干涉测光的波长.

考点点评: 解决本题的关键知道产生明暗条纹的条件,当光程差是半波长的偶数倍时,出现明条纹,当光程差是半波长的奇数倍时,出现暗条纹.以及知道波长、频率、波长、折射率、临界角的关系.