解题思路:根据题意,可假设一只蜘蛛先不动另一只蜘蛛去追击沿着棱去追击虫子,不论虫子如何逃跑,虫子和追击的蜘蛛始终能保持的最大距离为2个棱的长度,随着爬虫的移动,爬虫必然和等待的蜘蛛会出现最小距离为1个棱的长度,此时即可抓到虫子.
其中一只蜘蛛先不动,控制正方体的其中一个面,我们定义这个面为A1面,另一只蜘蛛开始向A1面的相对的面爬行,我们定义这个相对的面为A2面;这时2只蜘蛛,每个蜘蛛控制一个面,不论虫子如何移动,必然会移动到A1面或者A2面;于是必然有一个蜘蛛和虫子处于一个面,这时处于一个面的蜘蛛(设追击的蜘蛛为B1)开始追击虫子,另一个面的蜘蛛则不动,不论虫子如何逃跑,虫子和追击的蜘蛛始终能保持的最大距离为2个棱的长度,随着爬虫的移动,爬虫必然和等待的蜘蛛会出现最小距离为1个棱的长度,这时等待的蜘蛛出击,必然能抓到虫子.
点评:
本题考点: 最佳对策问题.
考点点评: 解答此题的关键是采用假设法,设想虫子的行走路径,然后再设想追击方案.