解题思路:由命题“∃x∈R,使x2+(a-1)x+1<0”是假命题,知∀x∈R,使x2+(a-1)x+1≥0,由此能求出实数a的取值范围.
∵命题“∃x∈R,使x2+(a-1)x+1<0”是假命题,
∴∀x∈R,使x2+(a-1)x+1≥0,
∴△=(a-1)2-4≤0,
∴-1≤a≤3.
故选D.
点评:
本题考点: 命题的真假判断与应用.
考点点评: 本题考查命题的真假判断和应用,解题时要注意由命题“∃x∈R,使x2+(a-1)x+1<0”是假命题,知∀x∈R,使x2+(a-1)x+1≥0,由此进行等价转化,能求出结果.