已知bd,ce是△abc的高,直线bd,ce相交所成的角中有一个角为50°,则∠bac的度数是
2个回答

∠BAC = 50°或130°

1)△ABC是锐角

设DB,CE相交于F

∵BD⊥AC

∴∠A + ∠ABD = 90°

∵CE⊥AB

∴∠ABF + ∠EFB = 90°

∴∠A = ∠EFB

∵直线BD,CE相交所成的角中有一个角为50°

∴∠A = ∠EFB = 50°

2)△ABC是钝角△,∠BAC是钝角

此时BD,CE的延长线交于F

∴∠F = 50°

∵∠FBE = ∠DBA,CD⊥FB,BE⊥FC

∴∠F = ∠DAB = 50°

∵∠DAB + ∠BAC = 180°

∴∠BAC = 130°

3)△ABC是钝角△,∠ABC 是钝角

设DB和CE的延长线交于F

∴∠F = 50°

∵∠FBE = ∠ABD ,BE⊥FE,AD⊥DB

∴∠A = ∠F = 50°