∠BAC = 50°或130°
1)△ABC是锐角
设DB,CE相交于F
∵BD⊥AC
∴∠A + ∠ABD = 90°
∵CE⊥AB
∴∠ABF + ∠EFB = 90°
∴∠A = ∠EFB
∵直线BD,CE相交所成的角中有一个角为50°
∴∠A = ∠EFB = 50°
2)△ABC是钝角△,∠BAC是钝角
此时BD,CE的延长线交于F
∴∠F = 50°
∵∠FBE = ∠DBA,CD⊥FB,BE⊥FC
∴∠F = ∠DAB = 50°
∵∠DAB + ∠BAC = 180°
∴∠BAC = 130°
3)△ABC是钝角△,∠ABC 是钝角
设DB和CE的延长线交于F
∴∠F = 50°
∵∠FBE = ∠ABD ,BE⊥FE,AD⊥DB
∴∠A = ∠F = 50°