当n=1,a_1=s_1=-1;
当n>=2,a_n=s_n-s_(n-1)=4n-5
检验当n=1,a_1也满足4n-5.所以a_n=4n-5对任何n.
b_1=-a_1=1,a_2-a_1=4
设等比数列公比为q,可知b_3=b_1*q^2并且b_3*4=b_1,由于是正项扥等比数列,q=1/2.
所以,b_n=1/2^(n-1).
c_n=a_n*b_n=(4n-5)/2^(n-1).从c_n>=c_(n+1),可得n>=3.就是说,当n>=3,c_n单调递减.所以可以容易知道当n=3,c_n取最大值7/4.当然,M=2.