已知,如图所示,∠ABD和∠BDC的平分线相交于点E,BE的延长线交CD于点F,∠1+∠2=90°.
1个回答

分析:(1)已知BE、DE平分∠ABD、∠BDC,且∠1+∠2=90°,可得∠ABD+∠BDC=180°,根据同旁内角互补,可得两直线平行.

(2)已知∠1+∠2=90°,即∠BED=90°;那么∠3+∠FDE=90°,将等角代换,即可得出∠3与∠2的数量关系.

证明:(1)∵BE、DE平分∠ABD、∠BDC,

∴∠1=12∠ABD,∠2=12∠BDC;

∵∠1+∠2=90°,

∴∠ABD+∠BDC=180°;

∴AB∥CD;(同旁内角互补,两直线平行)

(2)∵DE平分∠BDC,

∴∠2=∠FDE;

∵∠1+∠2=90°,

∴∠BED=∠DEF=90°;

∴∠3+∠FDE=90°;

∴∠2+∠3=90°.