1.在等比数列{a}中,前几项和为Sn(1)a7=12,q=根号2开3次方,求a19(2)a2=-2,a5=54,求a8
3个回答

1、解1)∵a7=a1*q^6=12,

a19=a1*q^18=a1*q^6*q^12

=12*[√2^(1/3)]^18=12*2^3=12*8=96

2)a2=a1q=-2,a5=a1*q^4=54

q^3=-27,∴q=-3,a1=2/3

∴a8=a1*q^7=2/3*(-3)^7=-1458

3)a9*a10=a1*a18

∴a18=a9*a10/a1=100/5=20

4)∵S3+S6=2S9

∴ a1(1-q^2)/(1-q)+a1*(1-q^5)/(1-q)

=2a1(1-q^8)/(1-q)

即1-q^2+1-q^5=2-2*q^8

q^2*(2q^6-q^3-1)=0

q^3=1,q^3=-1/2

q=0,q=1,舍去

∴q=(-1/2)^(1/3)

2、∵a4=a1*q^3=1/8,a1=1,

∴q^3=1/8,q=1/2,

∴S10=a1*(1-q^9)/(1-q)

=1*[1-(1/2)^9]/(1-1/2)

=511/256

1)∵bn=log2(an),得b1=log2(8)=3

∴bn-b(n-1)=log2(an)-log2[a(n-1)]

=log2[an/a(n-1)]=log2(q)=定值

则{bn}是首项a1=3,公差d=log2(q)的等差数列

2)、由上可知

Sn=nb1+[n(n-1)log2(q)]/2

=3n+[n(n-1)log2(q)]/2

S6=18+15log2(q),S7=21+21log2(q)

S8=24+28log2(q)

∵S7>S6,S7>S8,

∴21+21*log2(q)>18+15log2(q),

21+21*log2(q)>24+28log2(q)

即-1/2<log2(q)<-3/7

∴√2/2<q<2^(-3/7)