在等比数列{an}中,(1)a4=27,q= - 3,求a7;(2)a2=18,a4=8,求a1与q;(3)a5=4,a
2个回答

(1)a4=27,q= - 3,求a7; a7= a4 * [q^(7-4)] = 27*[(-3)^3]=27*(-27)= -729 所以 a7 = -729.

(2)a2=18,a4=8,求a1与q; a2=a1 * q =18 a4=a1 * q^3 = 8 a4/a2 = (a1*q^3)/(a1*q) = q^2 =8/18=4/9 ==> q= ±2/3 a2=a1 * q =18 ==> a1 = 18/q = 18/(±2/3) = ±18*3/2 = ±27 所以 a1 = ±27,q= ±2/3.

(3)a5=4,a7=6,求a9; a5 = a1 * q^4 = 4 a7 = a1 * q^6 = 6 a7/a5 = q^2 = 6/4 = 3/2 ==> q^2= 3/2 a1 = 4 / (q^4) = 4 / [(3/2)^2] = 4 / (9/4) = 16/9 a9 = a1 * q^8 = (16/9) * [(3/2)^4] = (16/9) * (81/16) = 9

(4)a5 - a1=15,a4 - a2=6,求a3 a5 - a1 = 15 ==> a1*(q^4 -1) =15 a4 - a2 = 6 ==> a1 * (q^3 - q) = 6 上面两式相除,则有 (q^4 -1) / (q^3 - q) = 15/6 (q≠0, ±1)==> [(q^2 + 1) * (q^2 - 1)] / [q * (q^2 - 1)] = 5/2==> (q^2 + 1) / q =5/2==> 2*(q^2) + 2 = 5*q ==> 2*(q^2) - 5*q + 2 = 0==> (2q-1)*(q-2)=0==> q= 1/2 或 q= 2 当 q = 1/2 时, a1 = 6 / (q^3 - q) = 6 / [(1/2)^3 - 1/2] = 6 / (-3/8) = -16 a3 = a1 * q^2 = -16 * (1/2)^2 = -16 * (1/4) = -4 当 q = 2 时, a1 = 6 / (q^3 - q) = 6 / (2^3 - 2) = 6/6 = 1 a3 = a1 * q^2 = 1 * 2^2 = 1 * 4 = 4.