f(x) =log(1/x)x>0 求 ∫xf(x)dx
2个回答

假如㏒(1/x)是以底为10,真数为1/x的对数

则∫xf(x)dx

=∫x㏒(1/x)dx

=∫xln(1/x)/ln10 dx,换底公式

=(1/ln10)∫xln(x^-1)dx

=(-1/ln10)∫xlnxdx

=(-1/ln10)(1/2)∫lnxd(x²),分部积分

=(-1/2ln10)[x²lnx-∫x²d(lnx)]

=(-1/2ln10)(x²lnx-∫xdx)

=(-1/2ln10)(x²lnx-x²/2)+C

=x²/(4ln10)-x²lnx/(2ln10)+C

亦可以转换为x²/(4ln10)-x²㏒x/2+C