在△ABC中角A,B,C所对的角分别是a,b,c已知角C=60度c=根号六求a+b的取值范围
1个回答

由余弦定理得:c^2=a^2+b^2-2abcosC.

a^2+b^2-2abcos60=(√6)^2.

a^2+b^2-ab=6.

a^2+b^2+2ab-3ab=6.

(a+b)^2=6-3ab (1).

∵a/sinA=c/sinC,b/sinB=c/sinC.

( a/sinA)*(b/sinB)=(c/sinC)^2

ab/(sinAsinB=(c/sinC)^2=[√6/(√3/2)]^2=8.

ab=8sinAsinB=4*(2sinAsinB)=4[c0s(A-B)+cos(A+B)]

=4[cos(A-B)-cosC].

=4cos(A-B)-2.

(a+b)^2=6-3[4cos(A-B)-2].

=6-12cos(A-B)+6.

=12-12cos(A-B).

=12{1-cos(A-B)]

=12*2sin^2[(A-B)/2].

=24sin^2[(A-B)/2].

a+b=2√6sin[(A-B)/2]

∵0<sin(A-B)/2≤1.

0< a+b≤2√6.

∵a+b>c=√6

∴a+b的取值范围为:√6<a+b≤2√6.